
facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

Detail Java in cloud computingredhat.com

For more than 25 years, Java™ has been a highly popular programming language—and Java remains one
of the top-3 most-used languages for enterprise software development, even today. Countless busi-
ness-critical systems around the world have been built using this iconic language.

When Java 2 Platform, Enterprise Edition (J2EE™) 1.2 was introduced in 1999, it marked the birth of en-
terprise Java and helped shape the future of software development. Major versions have included Java
1.3, Java 1.5, Java 8, and Java 11. Over the years, many people have proclaimed “Java is Dead,” but Java is
still going strong with the recent release of Java 18.

Java has always been well suited for enterprise environments because it is object-oriented, platform-in-
dependent, stable, secure, and backwards compatible. In addition, Java has offered a well-defined set
of APIs and extensive developer tooling since its inception. Java is also well loved because it is easy to
learn, and the promise to run anywhere has seen Java adoption surpass billions of devices (e.g., servers,
computers, smartphones, game consoles)—all in all, JVM is fast, stable, and a mature language that
caters to businesses worldwide.

In the last decade, however, application development has undergone a critical shift, as developers move
away from traditional, monolithic architecture patterns to lighter and more modular services and func-
tions built using cloud computing and Kubernetes. That’s all to take advantage of a more efficient, dis-
tributed cloud environment. Where does this leave Java, which was not originally designed for fast-boo-
tup times, low-memory footprints, or containers? Java has had to evolve, and if developers want to
enjoy the benefits of Java in cloud environments, they should look no further than Java itself. Let’s take
a look at some of the design assumptions and the changes that make Java an effective choice for cloud
computing and most importantly for the enterprise applications footprint.

Design assumptions

Is Java ready for cloud environments? It was originally built on certain design assumptions that make
it incompatible with cloud computing and Kubernetes. Due to the way application development has
evolved in the last decade, these design assumptions are no longer valid.

These are some of those design assumptions:

Long-running applications

Java was designed so applications could work anywhere and for a long time, maximizing throughput at
the expense of footprint. This made Java ideal for large datacenters with maximum memory and CPU,
hosting a large number of applications on one server. Due to the nature of the vertical stack, this made
Java optimal due to both cost and performance. While this particular style of deployments was effective
for a vertical stack back then, it of course poses challenges to Java applications moving to cloud envi-

Java in cloud computing
Moving Java workloads to cloud environments with Red Hat

Detail Java in cloud computingredhat.com

ronments, which are more distributed and inherently feature elastic scaling. Thus, applications that were
built as large monoliths also end up being more resource hungry to the underlying stack, and with long
release cycles, have also accumulated technical debt along the way making them “sticky” to the stack
they were built upon.

Java has been very effective with long-running applications. Let’s take a look at the two core features
that enable long-running applications to perform at scale.

Garbage collection

Garbage collection (GC), an automated memory management feature in the JVM, was needed in the
past for applications that run for a long time and are never shut down. GC periodically removes objects
in memory that are no longer in use, so as to reclaim memory for other needs.

Although serving an important purpose, this feature also poses a downside in that applications can
slow down, pause or even stall during the GC process, because of the massive CPU load required. In a
mission-critical application, these latency and availability issues could cause business transactions to be
interrupted or the user experience to be degraded.

While essential at the time, GC is no longer relevant because most applications in the cloud are smaller,
and designed to be quickly turned off and on, and scaled up and down. Applications in the cloud usually
run for milliseconds and then are shut down, so they do not run long enough for garbage collection to
be necessary.

Just-in-time compiler

The just-in-time (JIT) compiler is another example of a Java feature that was important in the past
for long-running applications. Over time, the JVM can learn the access patterns of an application and
optimize how it serves requests to eliminate unnecessary code and maximize performance of code that
is used often.

Similar to GC, the JIT compiler poses a downside in that it runs in the same process as the application
and competes with the application for resources. Also similar to GC, the JIT compiler is not needed in
cloud environments because applications only run for milliseconds.

Detail Java in cloud computingredhat.com

The vertical stack

Multiple applications to run on one machine

The application server is another design assumption that does not fit well with a massive scale, distribut-
ed architecture. The application server was created to allow users to maximize the value of the underly-
ing hardware. Because Java could provide high performance for multiple applications on one server,
an organization could invest in one very large, very expensive application server to host all of
its applications.

In theory, the application server made sense, but the downside was that applications sharing the same
application server could not be isolated enough to either deliver applications continuously or run into
technical issues (e.g., memory leaks) that would impact other applications, or possibly take the whole
system down. As a solution to this problem—maybe more appropriately categorized as a workaround—
users would deploy one application per server, completely defeating the original purpose of the
application server.

In cloud environments, the application server concept is challenged due to the inherent distributed
nature of the cloud computing. Applications are hosted on cloud platforms, distributed across multiple
machines. This is made possible because the applications are designed to be lightweight, modular, and
portable—ideal for cloud environments. In this scenario, there is no need for massive, on-premise hard-
ware. In fact, eliminating the need for expensive on-premise hardware, like application servers, is one the
most attractive benefits of cloud environments.

Designed for throughput

In traditional Java development, applications are designed in a vertical stack, which means all related
components are included in the stack, all part of one monolithic application. Java was designed for max-
imum throughput and low latency, which requires significant resources in a vertical stack. However, this
limitation no longer applies to applications in cloud environments because they can be scaled horizon-
tally, meaning the application is distributed across multiple machines and even multiple cloud environ-
ments. In this way, the application can achieve throughput and scalability.

Detail Java in cloud computingredhat.com

Why are developers moving to cloud computing?

Cloud computing offers many advantages. Here are some:

Streamlined developer experience

One aspect of cloud computing that is very attractive to developers is its ease of use for an improved
developer experience. In cloud environments, a developer can get access to resources in minutes with
the push of a button. In addition, the tools in cloud environments are well integrated and developers do
not have to configure the network, storage, compute, or other services, which are all pre-configured and
ready to go in cloud environments.

High availability

Cloud providers guarantee more than 99% uptime—a service-level agreement (SLA) that is hard to
equal in a datacenter without excessive spending and substantial effort. This makes cloud services an
attractive option for anyone wanting to run any type of cloud applications.

Scalability

Scalability is one of the most important reasons developers move to cloud computing, because it lets
users increase or decrease resources on demand, based on changing needs. To gain the same level of
scalability in a non-cloud environment would be prohibitively expensive.

Global reach

Cloud environments enable global reach, providing low-latency services all over the world. The major
cloud providers offer availability zones, which are physical datacenters placed strategically in various
regions worldwide. This lets cloud users extend the reach of their own applications, deploying them to
customers in different parts of the world that may not have been previously practical, economical, or
even possible.

Low cost

Maybe the most appealing advantage of cloud computing is the cost. Unlike datacenters and application
servers, cloud computing does not require a massive upfront expenditure, and you save on the incidental
costs of running the hardware—such as power, space, and maintenance. Since you pay a fixed cost, it’s
easier to fund your cloud initiative because you can fund it with OpEx instead of CapEx.

Cloud computing can be especially cost-effective for small companies that want to jump-start devel-
oping new applications right away. Cloud deployment is rapid and painless, and the cloud environment
is easy to access and learn, consequently accelerating developer productivity and time to market, which
further reduces cost.

Requirements for a modern language for cloud computing

If you decide that the advantages of cloud computing are too great to pass up, but you still want to keep
using Java, it is important to understand how Java can work in a cloud environment. Java was not origi-
nally designed for cloud computing and must therefore evolve to fit this new distributed environment.

Here are the requirements that Java must meet to become a modern language for cloud computing:

Detail Java in cloud computingredhat.com

Inner and outer loop development

For a traditional monolithic application, the developer will code and test locally, in an environment that
replicates the datacenter. Keeping the development environment similar to the production environment
is helpful because when the application finally moves into production, it has already been tested and
proven in a production-like environment.

Cloud-native development has changed this process because it is impossible to replicate Kubernetes
and the cloud environment onto your local development environment as was done previously. Conse-
quently, the development environment is now remote, in a cloud environment that is similar to the pro-
duction environment. This means a modern language for the cloud environment must be able to support
remote development.

Integration with cloud-provider services

A modern language and framework for cloud computing must integrate with services offered by
the cloud provider so developers can use cloud services such as AI, data lakes, Apache Kafka, and
API management.

Seamless experience across all hyperscalers

Many organizations that move to cloud environments use multiple cloud providers to balance the risk
and avoid vendor lock-in. One of the most important requirements for developers working in this envi-
ronment is a consistent experience across any combination of cloud providers—with a familiar platform
and tooling. That is why a modern language for cloud computing must be cloud-environment-agnostic.

Cloud architecture patterns

Cloud computing provides several innovative types of architectures that are changing the way applica-
tions are developed. These architecture patterns are distributed and do not rely on a vertical stack. They
require developers to build applications in a modular way, composed of smaller components that can
communicate and scale independently across multiple clouds.

Here are three major cloud architecture patterns that represent software development in
cloud computing:

Event-driven architecture

Event-driven architecture (EDA) is a software development method for building applications that asyn-
chronously communicate or integrate with other applications and systems via events.

An event can be any occurrence or change in state that is identified by the application. An application
designated as a “producer” detects the event and sends out relevant data in the form of a message.
Multiple “consumers” can receive the same message and use or process the associated data in their own
way to accomplish the specific job for which the application is designed. EDA architecture can be used
for any type of communication or data transfer.

Asynchronous event-based communication differs from the more traditional synchronous communica-
tion method in which two applications make a direct connection, most commonly via application pro-
gramming interfaces (APIs). Conversely, asynchronous communication is event-driven, allowing multiple
applications to communicate simultaneously and rapidly in real time.

EDA requires minimal coupling between the services while they can still communicate with each other,

Detail Java in cloud computingredhat.com

which makes EDA optimal for modern, distributed applications built in cloud environments.

The advantages of EDA include:

 � Real-time communication.

 � Low latency.

 � Scalability.

 � High throughput.

 � Reliability.

Conversely, traditional synchronous Java applications are not designed for a cloud environment and
face challenges in a distributed environment, such as communication latency, system degradation, and
unpredictable failures.

EDA is an ideal architecture for enterprise applications that derive benefits from scalable and reliable
real-time communication, such as stream processing, data integration, and website activity tracking. In
addition, EDA is often employed where humans generate the interaction, like the addition of a product
to a shopping cart on an e-commerce site or a retail kiosk.

Microservices architecture and service mesh

Microservices architecture is a software development method that has revolutionized the way applica-
tions are built and deployed. Unlike the traditional monolithic approach to development, which involves
building all the application’s components into a single deployment unit, the microservices approach
breaks down the application into independent components that represent core functions or services.
These services are loosely coupled, which means that while they are independent, they can still commu-
nicate with each other and work together as an application.

Detail Java in cloud computingredhat.com

Microservices represent a key step in optimizing application development for a cloud-native model.
Because an application is made up of independent services, a microservices architecture is perfect
for cloud computing. The application can be distributed across multiple cloud environments and even
on-premise hardware.

The main advantages of microservices are speeding up the development life cycle and reducing time to
market. Because an application is made up of a collection of separate services, these microservices can
all be built, tested, and deployed independently by multiple developers. This method minimizes delays
typically caused when developers have to wait for an entire application to recompile and redeploy every
time any type of change is made. When using microservices, the change can be made to a component
of the application without impacting the rest of the application. In this way, updates and fixes to applica-
tions can be implemented much more easily and quickly.

In addition to faster development, microservices provide these other advantages:

 � Quality: Because microservices are small, it is easier for developers to find and fix problems, there-
by producing a higher-quality application.

 � Scalability: Applications can scale quickly and economically because the microservices can be
deployed across multiple cloud environments, scaling to meet demand.

 � Resiliency: As independent services, microservices do not impact each other, so the whole applica-
tion does not go down when there is a failure within a single service.

 � Innovation: Microservices give developers freedom to be more innovative because they can
make changes and experiment without worrying about impacting the application and slowing time
to market.

For a microservices architecture to work as a functional cloud application, services must constantly
request data from each other through messaging. Building a service mesh layer simplifies
interservice communication.

A service mesh is a transparent, dedicated infrastructure layer that resides outside of an application,
designed to control how different microservices that make up an application share data with one an-
other. The purpose of the service mesh is to optimize service-to-service communications and minimize
potential points of communication failure.

A service mesh removes the logic governing service-to-service communication out of individual ser-
vices and abstracts it to a layer of infrastructure. This is accomplished by providing insight into—and
control of—the networked services within the mesh through the use of a sidecar proxy that intercepts
network communication between microservices. A sidecar proxy sits alongside a microservice and
routes requests to other proxies. Together, these sidecars form a mesh network.

A service mesh can be very helpful in cloud environments because cloud-native applications are built
using microservices, and as more microservices are added to applications, managing communication in a
cloud environment can become complex and challenging. The advantage of a service mesh is providing
connectivity between microservices and making communication flexible, reliable, fast, and manageable.

Without a service mesh, each microservice must be coded with logic to enable service-to-service com-
munication, which takes developer time and focus. A service mesh streamlines the development process
by eliminating the need for this extra coding.

A service mesh also enables developers to introduce added capabilities to microservices, such as

Detail Java in cloud computingredhat.com

Serverless applications are deployed in containers that automatically launch when called. The appli-
cation can be triggered by a variety of sources, such as events from other applications, cloud services,
Software-as-a-Service (SaaS) systems, and other services. Once deployed, serverless applications au-
tomatically scale up or down according to demand. For this reason, serverless applications only consume
resources when they are needed.

Serverless differs from a standard Infrastructure-as-a-Service (IaaS) cloud computing model. In the tra-
ditional scenario, the user pays the cloud provider for an always-on server to run applications. The cloud
infrastructure necessary to run an application is active even when the application is not being used.

With serverless architecture, however, applications are launched only as needed. When the application
runs, the cloud provider allocates resources. The user only pays for the resources while the application
is running.

The typical serverless model is Function-as-a-Service (FaaS), an event-driven design model allowing
developers to write logic that is deployed in containers managed by a cloud provider, then executed on
demand. The application is triggered by an event, and run automatically when needed.

Serverless is a good fit for applications that experience infrequent, unpredictable surges in demand.

routing control, fault tolerance, and security while making no changes to the microservice
components themselves.

In addition, a service mesh provides observability, monitoring, and testing to ensure communication
performance and availability. A service mesh makes it easier to troubleshoot communication failures,
because the source of the problem is not hidden within the microservice, but rather, in a visible infra-
structure layer alongside the services. Ultimately, this makes applications more robust and less vulnera-
ble to downtime.

A service mesh also has a self-learning capability to further improve communication. The service mesh
captures performance metrics on service-to-service communication and uses that data to automatically
improve efficiency and reliability of service requests.

Serverless architecture

Serverless architecture is a cloud-native development model that allows developers to build and run ap-
plications without having to manage the underlying infrastructure. A cloud provider handles the routine
work of provisioning, maintaining, and scaling servers so developers can focus on coding.

Detail Java in cloud computingredhat.com

Dev. Unit
test

Code
quality

Image
build

Sec.
scan

Int.
test

QA
UAT Prod

Rapid approval
(Automated/manual)

- Cucumber
- Arquillian
- Junit

- Sonarqube
- Coverity

RHACS
(Image and
deploy checks)

RHACS
(Admission controller)

RHACS
(Runtime
detection)

Red Hat container catalog

Automated quality with Red Hat

Trusted repos
registry.redhat.io

Private registry
- Artifactory

- Nexus

Coding
- IDE plug-ins

- Snyk

DevSecOps is a similar approach that also brings security teams into the process earlier than normal to
work together with development and IT Ops to ensure applications are secure as well.

The key to DevOps and DevSecOps is collaboration through sharing visibility, feedback, lessons learned,
and other insights. DevOps and DevSecOps approaches also focus on automating the development
cycle as much as possible, to improve time to market. All of the objectives require the right platform and
tools to support a collaborative and automated development environment.

DevOps goes hand in hand with cloud-native development because both initiatives work toward the
same goal: faster development of quality applications. A modern language for cloud computing must
inherently offer capabilities to support DevOps, including:

Serverless is also useful for use cases that involve incoming data streams, chat bots, scheduled tasks, or
business process automation.

In addition to the obvious benefit of reduced costs, serverless lets developers scale and distribute work-
loads across multiple cloud environments. The serverless model is so flexible that applications can be
scaled from zero to extremely high resource, used, and then scaled back to zero on a regular basis.

Also, serverless frees developers from routine, time-consuming tasks associated with scaling and server
provisioning, so they can spend more time innovating applications and features with business value.
With serverless, tasks such as managing the operating system, file system, and security patches; load
balancing; capacity management; scaling; logging; and monitoring are all offloaded to a cloud provider.

Traditional Java frameworks are typically too heavyweight and slow for serverless deployment to cloud
environments, especially deployment on Kubernetes. To work in a cloud environment, a Java framework
must evolve to provide faster startup time, lower memory consumption, and smaller application size.

Focus on DevOps/DevSecOps

DevOps is an approach to IT culture that brings development teams and IT operations teams together
into a more collaborative, end-to-end development process. In the DevOps approach, both develop-
ment and IT Ops are responsible for developing and deploying high-quality applications. This often
means bringing IT Ops requirements into the development cycle at an earlier stage to ensure the appli-
cation is built with production requirements in mind. When done correctly, DevOps can streamline the
application development life cycle and bring better applications to market faster.

Detail Java in cloud computingredhat.com

CI/CD: Continuous integration, continuous delivery, and continuous deployment are DevOps concepts
that support cloud-native development. Continuous integration means changes made to an applica-
tion by different developers are merged in a shared repository to ensure that all developers working on
the application have access to the same version of the application. Continuous delivery or continuous
deployment means changes to an application are automatically tested and deployed to streamline the
development process. A modern language for cloud computing must support the CI/CD pipeline to gain
the benefits of accelerated development and improved quality.

Automation: In cloud-native development, automation is very important because of the complexity of
distributed applications in the cloud environment. Multiple applications made up of multiple microser-
vices spread across multiple cloud environments can be a challenge to develop and manage. Automa-
tion of processes like integration, testing, and deployment can alleviate some of these challenges, and
significantly accelerate the development process while improving quality due to reduced human error.

Bringing Java into cloud computing with Quarkus

Quarkus is a Kubernetes-native Java stack built on proven Java libraries and standards and designed for
containers and cloud deployments. Quarkus lets organizations maximize years of investment in Java by
translating the language for cloud computing and Kubernetes. In this way, Quarkus provides a pathway
for developers to continue using their existing Java knowledge and experience, as well as the same Java
frameworks they have used in the past.

Quarkus was designed to address Java’s limitations with regard to cloud-native application architec-
tures like containers, microservices, and serverless. Quarkus is the ideal Java framework for hybrid cloud
computing because it supports both traditional and cloud-native architectures.

Java developers are able to use Quarkus to build apps that have a faster startup time and take up
less memory than traditional Java-based microservices frameworks. This translates into lower costs
because it takes less memory and CPU to run the same application. It also translates into higher produc-
tivity because developers are not waiting around for massive applications to rebuild and redeploy to
test their changes. With Quarkus, a developer can make a change to the code and see it in the applica-
tion immediately.

Quarkus works out of the box with popular Java standards, frameworks, and libraries, alleviating the
need to learn new APIs or switch to another programming language altogether. So the developer can
choose the Java framework they want to use with Quarkus, but then Quarkus adds developer productiv-
ity and fast performance on top.

These are the capabilities, features, and tools that Quarkus adds on top of Java:

Less code

When using Quarkus, developers are able to write less code and still build more functionality compared
to traditional Java. This helps the sustainability of the application. With a super lightweight, super fast
application built using Quarkus, you can deploy hundreds of copies of the application and achieve ex-
treme throughput without adding footprint.

High performance

Quarkus does not simply translate Java to the cloud—Quarkus takes Java to the next level. Over the last
decade, there have been attempts to make Java faster, but all those attempts focused on the Java VM,
the underlying Java technology, and not the frameworks that ride on top. Quarkus optimizes the frame-

Detail Java in cloud computingredhat.com

works themselves to achieve blazingly fast performance.

Users can deploy more applications in Quarkus with the same resources, compared to traditional Java.
The high throughput delivered by Quarkus comes from the ability to have very dense deployments of
multiple copies of Quarkus distributed across the network.

Quarkus was built on a container-first philosophy, meaning it is optimized for lower memory usage and
faster startup times. Quarkus builds applications to consume 1/10 the memory when compared to tradi-
tional Java and has a faster startup time—as much as 300 times faster.

Live coding

Quarkus enables fast iteration during development with “live coding.” Code changes are automatically
and immediately reflected in the running application.

The traditional Java workflow requires developers to recompile and redeploy an application each time
a change is made, taking up to a minute or more. This adds up to significant delays for Java developers.
Live coding helps increase developer productivity by letting them make changes on the fly, and simply
refresh the browser, without having to recompile and redeploy the entire application every time. Quarkus
typically implements those changes in under one second.

Continuous testing

Continuous testing, available in Quarkus at the press of a key, lets developers pursue test-
driven development.

In the traditional Java development life cycle, the developer will write code, write a test, run the test, see
if the test passes or fails, and then make changes. In Quarkus with continuous testing, the developer can
run unit tests continuously in real time, concurrently while writing code. The tests run automatically in
the background, providing constant feedback. Any time you make one wrong keystroke and cause a test
to fail, you know about it immediately. This capability substantially accelerates the development cycle.

Dev services

Quarkus dev services let developers easily test application dependencies.

Every application has dependencies on other applications and services. During traditional Java develop-
ment, the developer would have to spin up a copy of any connected service to fully test the application.
However, some services—like Apache Kafka, message brokers, and identity management systems—can
be very challenging to replicate. Quarkus solves this problem with dev services, which automatically
provide services needed to test an application.

For example, if your application needs a database, Quarkus identifies this need, knows the correct data-
base, spins up the database, and connects your application—all automatically.

Remote Dev

The ability to do remote development in a cloud-native Java runtime simplifies the development work-
flow—from writing code to building, running, debugging, and deploying microservices at speed.

Detail Java in cloud computingredhat.com

Quarkus app
(local dev mode)

Remote Quarkus app

Data access

Cloud services

Local developer IDE

Live coding

Remote connection

Browser access

Remote development with Quarkus

Quarkus remote dev lets the developer run applications in a remote container environment while still
gaining access via their local laptop. Changes made on the local development machine are automatically
pushed to the running remote Quarkus application in real time.

The advantage of remote dev is that the remote environment is closer to the application’s production
environment making tests more accurate. A related advantage of remote dev is access to services in the
cloud environment that may not be available or easy to recreate on a developer’s local machine. Overall,
remote dev can give the developer confidence that the application will run in production, and drastically
reduce the time needed to develop and test changes.

Cloud and Kubernetes-native development on Red Hat OpenShift

Historically, it has been difficult to deploy applications to Kubernetes. However, Quarkus has innate
knowledge of Kubernetes and Red Hat® OpenShift®, Red Hat’s underlying Kubernetes-based platform.
Quarkus automates the process of deploying your application on Kubernetes and Red Hat OpenShift,
handling all the configuring and script writing giving you a Kubernetes-native development experience.

Simply adding the Quarkus Kubernetes extension or the Quarkus OpenShift extension will automatically
generate Kubernetes or OpenShift resources based on the project.

Integration with cloud services

Quarkus also has innate knowledge of the many services offered by the major cloud providers allowing
developers to easily integrate applications with these services.

For example, Quarkus Funqy is a portable Java API used to write functions deployable to Function-as-
a-Service (FaaS) environments like AWS Lambda, Azure Functions, Knative, and Knative Events.

Another example, Quarkus lets developers use AWS services such as S3, SNS, and Alexa, as well as other
cloud provider services.

Detail Java in cloud computingredhat.com

9% 10% 20% 18% 17% 20%

Retire Retain Rehost Replatform Refactor Repurchase

Nearly 80% plan to do something

How to modernize?

Source: Application Modernization Report, Konveyor Community, 2022

Path 1: Rehost

The rehost path, also known as “lift and shift,” means to deploy your existing application as is within a
virtual machine (VM).

The rehost path involves lifting and shifting Java applications running on traditional application servers
into VMs running on a hybrid cloud platform. Monolithic applications remain unchanged on your applica-
tion server and retain all existing integrations and dependencies. External data and integrations can still
be kept on your legacy platforms.

Rehosting generally takes a short amount of time and results in low migration costs, but it delivers fewer
benefits than the other modernization paths. Keeping this in mind, rehosting can still help you move
applications to a consistent platform, and it can prepare you for future cloud-native operations.

Integration with traditional Java frameworks

Quarkus allows developers to continue to use the Java frameworks they know and love. Quarkus is
designed to work with popular Java standards, frameworks, and libraries like Eclipse MicroProfile and
Spring, as well as Apache Kafka, RESTEasy (JAX-RS), Hibernate ORM (JPA), Infinispan, Camel, and
many more.

Integration with CI/CD, observability, tracing, telemetry

When you move from traditional Java to a distributed architecture like microservices, your application
becomes more complex. Using distributed services and EDA, challenges in observing, tracing, and
debugging become exponentially greater. Quarkus minimizes the pain by providing out-of-the-box
support for observability, tracing, telemetry, and CI/CD systems.

Your pathway to the cloud

If you are thinking about modernizing your Java applications, moving away from monolithic architec-
tures, and taking true advantage of the cloud deployment model, there are three main paths to Java
application modernization: rehost, replatform, and refactor.

Keep in mind that all your applications do not need to follow the same modernization path. You can
choose the path that best fits the characteristics of each application, as well as your organization’s
current and expected needs.

Detail Java in cloud computingredhat.com

Some traditional application servers may not work in a VM. In this case, you must redeploy your appli-
cations in a modern runtime environment before moving them to a VM. If you need to change runtime
environments, consider replatforming (path 2) your applications and deploying them in containers to
optimize your modernization efforts.

Path 2: Replatform

The replatform path means to deploy your application in a container on a Kubernetes-based
cloud platform.

Replatforming involves lifting, modifying, and shifting Java applications to modern runtime environ-
ments running in containers on a hybrid cloud platform. Basic Java applications require few changes to
benefit from a containerized Java runtime like OpenJDK.

Enterprise applications are migrated to modern runtime environments—like Red Hat JBoss Enterprise
Application Platform, IBM WebSphere Liberty, or Red Hat JBoss Web Server—prior to deploying them
in containers. This path usually takes longer than rehosting, but it delivers more benefits. Unifying your
applications on a single hybrid cloud platform streamlines operations and allows you to deliver self-ser-
vice capabilities. Your replatformed applications can also take advantage of all of the native capabilities
of your hybrid cloud platform.

Path 3: Refactor

The refactor path means to rebuild your application as microservices, integrate new technologies, and
deploy on a cloud platform.

Refactoring involves redeveloping Java application services as microservices deployed within a service
mesh on a hybrid cloud platform. Services can be rebuilt over time to gradually move functionality from
your old application architecture to your new one.

During the process, you can also upgrade underlying technologies and add in new cloud-native capabil-
ities like artificial intelligence and machine learning (AI/ML), analytics, autoscaling, serverless functions,
and event-driven architecture.

Refactoring takes the most time, but it also provides the greatest advantage. Refactoring delivers all
of the benefits of rehosting and replatforming while allowing you to take advantage of innovative new
technologies to increase business agility and value.

Customer testimonials

Here are just a few examples of Red Hat customers who successfully moved Java into cloud environ-
ments with Quarkus:

The Asiakastieto Group

The Asiakastieto Group is a leading provider of innovative digital business and consumer information
services in the Nordic region. To support a shift to open banking, comply with new data privacy and
security requirements, and help solve high levels of debt in the Nordics, the company built a credit as-
sessment solution. Using Red Hat OpenShift, Red Hat Integration, and Quarkus, Asiakastieto developed
their Account Insight application to reduce personal debt and payment defaulting to a more accurate
assessment of an individual’s repayment ability. The company also migrated from Thorntail to Quarkus
to optimize its hardware resources by improving microservice start-up times, memory use, and
server density.

Copyright © 2022 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its
subsidiaries in the United States and other countries. Java and all Java-based trademarks and logos are trademarks or registered trademarks of
Oracle America, Inc. in the U.S. and other countries. All other trademarks are the property of their respective owners..

About Red Hat

 Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered approach
to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies. Red Hat helps
customers develop cloud-native applications, integrate existing and new IT applications, and automate and manage complex
environments. A trusted adviser to the Fortune 500, Red Hat provides award-winning support, training, and consulting services
that bring the benefits of open innovation to any industry. Red Hat is a connective hub in a global network of enterprises,
partners, and communities, helping organizations grow, transform, and prepare for the digital future.

North America

1 888 REDHAT1
www.redhat.com

Europe, Middle East,
and Africa

00800 7334 2835
europe@redhat.com

Latin America

+54 11 4329 7300
info-latam@redhat.com

Asia Pacific

+65 6490 4200
apac@redhat.com

facebook.com/redhatinc
@RedHat
linkedin.com/company/red-hat

Detail Java in cloud computing

redhat.com
#F31646_0622

Bankdata

An IT service provider for several large Danish banks, Bankdata builds, implements, and runs high-qual-
ity IT solutions. To find the best Java framework, Bankdata tested the performance and efficiency of
their Spring Boot Java framework against Quarkus. The results showed that a Quarkus-native version
of the test application provided faster boot-up times (less than one second compared to 3 minutes for
Spring), 57% less memory use per call processed, and lower CPU use. Bankdata found that migrating
to Quarkus could reduce testing time so the company could bring innovative new services to
market quicker.

Lufthansa Technik

Lufthansa Technik runs a digital platform, called AVIATAR, that helps airlines avoid delays and can-
cellations by better organizing and scheduling of maintenance. To address fast growth and increasing
demand from customers, the company decided to move to a microservices architecture based on Mi-
crosoft Azure Red Hat OpenShift. The AVIATAR team deployed Quarkus to help reduce cloud resource
consumption. Lufthansa Technik found that the team could run 3 times denser deployments without
sacrificing availability and response times of services. In addition, Quarkus helped accelerate the devel-
opment life cycle. For example, a two-person team developed a new microservice, called the “Customer
Configuration” service, in a single 3-week sprint.

Learn more

For complementary information on this topic, visit Why develop Java apps with Quarkus
on Red Hat Openshift.

https://www.redhat.com/en/about/company?sc_cid=70160000000e5syAAA
https://access.redhat.com/recognition
https://www.redhat.com/en/technologies/cloud-computing/openshift/quarkus
https://www.redhat.com/en/technologies/cloud-computing/openshift/quarkus

